Abstract 163

THE EFFECT OF PROLACTIN RELEASING GASTROKINETICS ON STREPTOZOCIN INDUCED DIABETIC RETINOPATHY

Peker K.^[3], Akyuz Unsal A.I.*^[3], Demirci B.^[6], Erkan E.^[3], Meteoglu I.^[2], Bekmez S.^[4], Aydin Eroglu S.^[1], Kurt Omurlu I.^[5], Dost T.^[6], Dundar S.^[3]

[1]İzmir Çiğli Research and Training Hospital, Department of Ophthalmology ~ İzmir ~ Turkey, [2]Aydin Adnan Menderes University, Department of Pathology ~ Aydin ~ Turkey, [3]Aydin Adnan Menderes University, Department of Ophthalmology ~ Aydin ~ Turkey, [4]University of Health Sciences Izmir Dr. Behcet Uz Children's Diseases and Surgery Training and Research Hospital, Department of Ophthalmology ~ İzmir ~ Turkey, [5]Aydin Adnan Menderes University, Department of Biostatistics ~ Aydin ~ Turkey, [6]Aydin Adnan Menderes University, Department of Pharmacology ~ Aydin ~ Turkey

To investigate the effect of metoclopramide (MCP), trimethobenzamide (TMB), and domperidone (DOM) on the experimental model of diabetic retinopathy.

Wistar rats were grouped into 5 groups, as follows: control, diabetes mellitus (DM), DM+MCP, DM+TMB, and DM+DOM groups, consisting of 10 rats in each. Streptozocin (STZ) was injected intraperitoneally into four groups to induce diabetes. Six weeks after STZ; MCP, TMB, and DOM treatments were applied to three groups for 15 days, respectively. As far as IOP measurements and Schirmer tests were completed, enucleation was performed for immunohistochemical evaluation of retinal expression with prolactin, VEGF, and CD31.

There were no statistically significant differences in IOP and Schirmer test results among the groups. Based on VEGF, CD31, and Prolactin staining intensity, a score was calculated for each group by dividing the total staining score by the number of rats in the group. Prolactin receptor staining was significantly increased in the ganglion cell layer in all treatment groups (p<0.05). While VEGF staining in the control group scored 0.78, the DM group's score increased to 1.28. In the treatment groups, the scores decreased to 0.88 for MCP, 1.11 for TMB, and 0.78 for DOM (p=0.006). The CD31 scores followed a similar pattern to VEGF. Diabetes induction nearly doubled the CD31 score to 1.29. Treatment with MCP, TMB, and DOM reduced the scores to 0.75, 0.89, and 0.56, respectively (p=0.012).

Anti-dopaminergic MCP, TMB, and DOM treatments used for diabetic gastroparesis displayed a favourable safety profile on IOP and tear-film, as well as increased the amount of prolactin receptors, decreased VEGF and CD31 expression in the retinal ganglion cell layer. In light of these results, we assume that using anti-dopaminergic medications against diabetic gastroparesis may have an additional benefit on diabetic retinopathy.

- 1. Abu El-Asrar AM, Nawaz MI, Ahmad A, Siddiquei MM, Allegaert E, Gikandi PW, De Hertogh G, Opdenakker G. CD146/Soluble CD146 Pathway Is a Novel Biomarker of Angiogenesis and Inflammation in Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2021 Jul 1;62(9):32. doi: 10.1167/iovs.62.9.32. PMID: 34293080; PMCID: PMC8300056.
- 2. Adán-Castro E, Siqueiros-Márquez L, Ramírez-Hernández G, Díaz-Lezama N, Ruíz-Herrera X, Núñez FF, et al. Sulpiride-induced hyperprolactinaemia increases retinal vasoinhibin and protects against diabetic retinopathy in rats. J Neuroendocrinol. 2022 Apr 1;34(4).
- 3. Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull Exp Biol Med. 2021

May 1;171(2):179-89

- 4. Gajendran M, Sarosiek I, McCallum R. Metoclopramide nasal spray for management of symptoms of acute and recurrent diabetic gastroparesis in adults. Expert Rev Endocrinol Metab. 2021;16(2):25–35
- 5. Komolkriengkrai M, Matsathit U, Sirinupong N, Khimmaktong W. The effectiveness of edible bird's nest in lowering VEGF, CD31, and PDGFR-β levels in diabetic retinopathy in rats with type 1 diabetes. Histol Histopathol. 2024 Oct 1:18825. doi: 10.14670/HH-18-825. Epub ahead of print. PMID: 39449415.
- 6. Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol. 2016 May;23(3):253-9. doi: 10.1097/MOH.000000000000239. PMID: 27055047; PMCID: PMC4986701.
- 7. Núñez-Amaro CD, López M, Adán-Castro E, Robles-Osorio ML, García-Franco R, García-Roa M, Villalpando-Gómez Y, Ramírez-Neria P, Pineiro N, Rubio-Mijangos JF, Sánchez J, Ramírez-Hernández G, Siqueiros-Márquez L, Díaz-Lezama N, López-Star E, Bertsch T, Marínez de la Escalera G, Triebel J, Clapp C. Levosulpiride for the treatment of diabetic macular oedema: a phase 2 randomized clinical trial. Eye (Lond). 2024 Feb;38(3):520-528. doi: 10.1038/s41433-023-02715-5. Epub 2023 Sep 6. PMID: 37673971; PMCID: PMC10858020.
- 8. Nuñez-Amaro CD, Moreno-Vega AI, Adan-Castro E, Zamora M, Garcia-Franco R, Ramirez-Neria P, Garcia-Roa M, Villalpando Y, Robles JP, Ramirez-Hernandez G, Lopez M, Sanchez J, Lopez-Star E, Bertsch T, Martinez de la Escalera G, Robles-Osorio ML, Triebel J, Clapp C. Levosulpiride Increases the Levels of Prolactin and 9. Antiangiogenic Vasoinhibin in the Vitreous of Patients with Proliferative Diabetic Retinopathy. Transl Vis Sci Technol. 2020 Aug 17;9(9):27. doi: 10.1167/tvst.9.9.27. PMID: 32879783; PMCID: PMC7442881.
- 10. Zhang YX, Zhang YJ, Li M, Tian JX, Tong XL. Common Pathophysiological Mechanisms and Treatment of Diabetic Gastroparesis. J Neurogastroenterol Motil. 2024 Apr 30;30(2):143-155. doi: 10.5056/jnm23100. PMID: 38576367; PMCID: PMC10999838.